Basic statistics formulas

Sets

De Morgan’s Law

\((A \cup B)^c = A^c \cap B^c \quad \& \quad (A \cap B)^c = A^c \cup B^c\)

Commutativity

\(A \cup B = B \cup A\) and \(A \cap B = B \cap A\)

Associativity

\((A \cup B) \cup C = A \cup (B \cup C)\)
\((A \cap B) \cap C = A \cap (B \cap C)\)

Distributivity

\((A \cup B) \cap C = (A \cap C) \cup (B \cap C)\)
\((A \cap B) \cup C = (A \cup C) \cap (B \cup C)\)

Probability

- \(p(A) = 1 - p(A^c)\)
- \(p(A \cup B) = p(A) + p(B) - p(A \cap B)\)
- If events A and B are mutually independent then \(p(A \cap B) = p(A)p(B)\)
- \(p(A|B) = \frac{p(A \cap B)}{p(B)}\) so long as \(p(B) > 0\)
- \(p(A \cap B) = p(A|B)p(B) = p(B|A)p(A)\) so long as \(p(A) > 0\) and \(p(B) > 0\)
- If \(\{B_1, B_2, ..., B_k\}\) is a set of mutually exclusive and exhaustive events, then

\(p(A) = p(A|B_1)p(B_1) + p(A|B_2)p(B_2) + ... + p(A|B_k)p(B_k)\)

Measures of Location

Sample mean

\[\bar{x} = \frac{\sum x}{n}\]

Median (for raw data i.e list of numbers ungrouped)

List the numbers in ascending order. Median is:

\((n+1)/2\) value if \(n\) is odd;

Mean of \(n/2\)th and \((n+1)/2\)th values if \(n\) is even.

Measures of spread

Sample variance

\[s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}\]

Sample standard deviation, \(s\)

\[s = \sqrt{\text{variance}}\]

Range

Largest value – smallest value

Interquartile range (IQR)

Upper quartile – lower quartile

Coefficient of variation

\[s / \bar{x}\]
Expectation, variance, and covariance

If random variable X is discrete:

$$E(X) = \sum x_i p(x_i)$$

which is calculated over all possible values of X.

Let $g(X)$ denote a function of discrete X, then:

$$E(g(X)) = \sum g(x_i) p(x_i)$$

Expection rules

Let X, Y, Z denote random variables; a, b denote constants

- **E1.** $E(a) = a$
- **E2.** $E(aX) = a E(X)$
- **E3.** $E(X+Y) = E(X) + E(Y)$

Variance rules

- **V1.** $\text{var}(a) = 0$
- **V2.** $\text{var}(aX) = a^2 \text{var}(X)$
- **V3.** $\text{var}(X \pm Y) = \text{var}(X) + \text{var}(Y) \pm 2 \text{Cov}(X,Y)$

Covariance rules

- **C1.** $\text{Cov}(a,X) = 0$
- **C2.** $\text{Cov}(aX,bY) = ab \text{Cov}(X,Y)$
- **C3.** $\text{Cov}(X+Y,Z) = \text{Cov}(X,Z) + \text{Cov}(Y,Z)$

Normal density function

The normal density function (aka normal distribution) has 2 parameters: mean and variance. For the normal distribution:

- 90% of data falls within $\pm 1.65\sigma$
- 95% of data falls within $\pm 1.95\sigma$

Standardizing (Z-score)

$$z = \frac{x - \mu}{\sigma}$$

Sampling distribution of sample mean

Suppose $X \sim N(\mu, \sigma^2)$, then the distribution of the sample mean \overline{X} is

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

The standard error of \overline{X} is

$$\sqrt{\frac{\sigma^2}{n}}$$

This result is true if X does not follow the normal distribution but n is large (and then the result follows because of the Central Limit Theorem)
Confidence intervals for the mean

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumptions</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean μ</td>
<td>Data normally distributed or n is large (n>30); σ^2 known</td>
<td>$\bar{x} \pm z_{a/2} \frac{\sigma}{\sqrt{n}}$</td>
</tr>
<tr>
<td></td>
<td>Data normally distributed; n small; σ^2 unknown</td>
<td>$\bar{x} \pm t_{a/2,n-1} \frac{s}{\sqrt{n}}$</td>
</tr>
<tr>
<td>Difference in means $\mu_X - \mu_Y$</td>
<td>Data are normally distributed; σ_X^2, σ_Y^2 are known</td>
<td>$(\bar{x} - \bar{y}) \pm z_{a/2} \sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$</td>
</tr>
<tr>
<td>Case of 2 independent distributions</td>
<td>Variances unknown; Large samples</td>
<td>$(\bar{x} - \bar{y}) \pm z_{a/2} \sqrt{\frac{s_X^2}{n_X} + \frac{s_Y^2}{n_Y}}$</td>
</tr>
<tr>
<td></td>
<td>Data are normally distributed; σ_X^2, σ_Y^2 are unknown but $\sigma_X^2 = \sigma_Y^2$</td>
<td>$(\bar{x} - \bar{y}) \pm t_{a/2,n_X + n_Y - 2} \sqrt{\frac{s_p^2 \left(\frac{1}{n_X} + \frac{1}{n_Y} \right)}{n_X + n_Y - 2}}$</td>
</tr>
</tbody>
</table>

Where the estimate of the pooled variance is $s_p^2 = \frac{(n_X - 1)s_X^2 + (n_Y - 1)s_Y^2}{n_X + n_Y - 2}$
Hypothesis test for the mean

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Assumption</th>
<th>Test equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing a single mean equals a value “a”</td>
<td>Data normally distributed, or large sample; (\sigma^2) known</td>
<td>(\frac{\bar{x} - a}{\sigma / \sqrt{n}}) Z-table for critical value</td>
</tr>
<tr>
<td></td>
<td>Data normally distributed (\sigma^2) unknown</td>
<td>(\frac{\bar{x} - a}{s / \sqrt{n}}) t-table with df = n-1 for critical value</td>
</tr>
<tr>
<td>Testing the difference between 2 means equals a number “a” (which includes the case of a=0 which is a test for no difference between means)</td>
<td>Data normally distributed, or large sample; Independent samples; (\sigma_x^2, \sigma_y^2) are known</td>
<td>(\frac{\bar{x} - \bar{y} - a}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}}) Z-table for critical value</td>
</tr>
<tr>
<td>Case of 2 independent distributions</td>
<td>Data normally distributed, or large sample; Independent samples; (\sigma_x^2, \sigma_y^2) are unknown</td>
<td>(\frac{\bar{x} - \bar{y} - a}{\sqrt{\frac{s_x^2}{n_x} + \frac{s_y^2}{n_y}}}) Z-table for critical value</td>
</tr>
<tr>
<td></td>
<td>Data are normally distributed; (\sigma_x^2, \sigma_y^2) are unknown but (\sigma_x^2 = \sigma_y^2)</td>
<td>(\frac{\bar{x} - \bar{y} - a}{s_p \left(\frac{1}{n_x} + \frac{1}{n_y} \right)}) Where the estimate of the pooled variance is (s_p^2 = \frac{(n_x-1)s_x^2 + (n_y-1)s_y^2}{n_x + n_y - 2})</td>
</tr>
</tbody>
</table>
Covariance and correlation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Population formula</th>
<th>Sample formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariance between variables X and Y</td>
<td>(\text{COV}(X,Y) = \text{E}(XY) - \text{E}(X)\text{E}(Y))</td>
<td>(\sum (x_i - \bar{x})(y_i - \bar{y})) (n - 1)</td>
</tr>
<tr>
<td>Pearson’s correlation</td>
<td>(\frac{\text{Cov}(X,Y)}{\sigma_x \sigma_y})</td>
<td>(\sum \frac{xy - n\overline{xy}}{s_x s_y})</td>
</tr>
</tbody>
</table>

Simple linear regression

Model: for \(i = 1,2,\ldots,n \)

\[y_i = \alpha + \beta x_i + u_i \]

OLS estimators

<table>
<thead>
<tr>
<th>Intercept</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x})</td>
<td>(\hat{\beta} = \frac{\sum x_i y_i - n\overline{x}\overline{y}}{\sum x_i^2 - n\overline{x}^2})</td>
</tr>
<tr>
<td>(\text{var}(\hat{\alpha}) = \frac{\sigma^2 \sum x_i^2}{n(\sum x_i^2 - n\overline{x}^2)})</td>
<td>(\text{var}(\hat{\beta}) = \frac{\sigma^2}{\sum x_i^2 - n\overline{x}^2})</td>
</tr>
</tbody>
</table>

Estimator for variance of error term \(u \) is

\[\frac{\sum (y_i - \hat{y}_i)^2}{n - 2} \]